Fourier Series

April 13, 2012

Fourier series is an expansion of a periodic function of period 2π which is representation of a function in a series of sine or cosine such as
$f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)$
where a_{0}, a_{n} and b_{n} are constants and are known as fourier coefficents.
In applying fourier theorem for analysis of an complex periodic function , given function must satisfy following condition
(i) It should be single valued
(ii) It should be continous.

Drichlet's Conditions(sufficient but not necessary)

When a function $f(x)$ is to be expanded in the interval (a,b)
(a) $f(a)$ is continous in interval (a, b) except for finite number of finite discontinuties.
(b) $f(x)$ has finite number of maxima and minima in this interval.

Orthogonal property of sine and cosine functions
$\int_{-\pi}^{\pi} \sin (m x) \cos (m x) d x=0$
$\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\left[\begin{array}{cc}\pi \delta_{m n} & m \neq 0 \\ 0 & m=0\end{array}\right]$
$\int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x=\left[\begin{array}{cc}\pi \delta_{m n} & m \neq 0 \\ 2 \pi & m=0\end{array}\right]$

Fourier Constants

$a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x a_{0}$ is the average value of function $f(x)$ over the interval $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x$

For even functions

$f(-x)=f(x)$ and fourier series becomes $f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)$

For odd functions

$f(-x)=-f(x)$ and fourier series becomes $f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \sin (n x)$
Complex form of fourier series
putting $c_{0}=c_{0}$
$c_{n}=\frac{a_{n}-i b_{n}}{2}$
and
$c_{-n}=\frac{a_{n}+i b_{n}}{2} f(x)=\sum_{-\infty}^{\infty} C_{n} e^{i n x}$
coefficent
$C_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$
Fourier series in interval ($0, T$)
General fourier series of a periodic piecewise continous function $f(T)$
having period $T=\frac{2 \pi}{\omega}$ is
$f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)$
where
$a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t$
$a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos (n \omega T) d t$
$b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin (n \omega T) d t$

Complex Form of Fourier Series

$f(x)=\sum_{n=-\infty}^{\infty} C_{n} e^{-i \omega t}$
where
$c_{n}=\frac{1}{T} \int_{0}^{T} f(t) e^{-i \omega t} d x$

Advantages of Fourier series

- It can also represent discontinous functions
- Even and odd functions are conveniently represented as cosine and sine series.
- Fourier expansion gives no assurance of its validity outside the interval.

Change of interval from $(-\pi, \pi)$ to $(-l, l)$

Series will be
$f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n x \pi}{l}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n x \pi}{l}\right)$
with
$a_{0}=\frac{1}{2 l} \int_{-l}^{l} f(x) d x$
$a_{n}=\frac{1}{2 l} \int_{-l}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x$
$b_{n}=\frac{1}{2 l} \int_{-l}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x$

Fourier Series in interval ($0, l$)

Cosine series when function $f(x)$ is even

$$
\begin{aligned}
& f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right) \\
& a_{0}=\frac{1}{l} \int_{0}^{l} f(x) d x \\
& a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

Sine series when function $f(x)$ is odd

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{l}\right) \\
& b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

1

[^0]
[^0]: ${ }^{1}$ This documeny is created by http://physicscatalyst.com

